Numerical solution of system of Fredholm-Volterra integro-differential equations using Legendre polynomials
نویسندگان
چکیده
In this paper, two collocation methods based on the shifted Legendre polynomials are proposed for solving system of nonlinear Fredholm-Volterra integro-differential equations. The equation considered in paper involves derivative unknown functions integral term, which makes its numerical solution more complicated. We first introduce a single-step method interval [0, 1]. Next, multi-step version is derived arbitrary T] that domain decomposition strategy and specially suited large calculations. scheme converts problem to algebraic equations whereas later solves step by subintervals produces sequence systems Some error estimates investigated. Numerical examples given comparisons with other available literature done demonstrate high accuracy efficiency methods.
منابع مشابه
Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
متن کاملNumerical Solution of Fredholm Integro-differential Equations By Using Hybrid Function Operational Matrix of Differentiation
In this paper, first, a numerical method is presented for solving a class of linear Fredholm integro-differential equation. The operational matrix of derivative is obtained by introducing hybrid third kind Chebyshev polynomials and Block-pulse functions. The application of the proposed operational matrix with tau method is then utilized to transform the integro-differential equations to...
متن کاملApproximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملNumerical Solution of Fredholm-volterra Fractional Integro-differential Equations with Nonlocal Boundary Conditions
In this paper, a numerical method is proposed to solve FredholmVolterra fractional integro-differential equation with nonlocal boundary conditions. For this purpose, the Chebyshev wavelets of second kind are used in collocation method. It reduces the given fractional integro-differential equation (FIDE) with nonlocal boundary conditions in a linear system of equations which one can solve easily...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2022
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2205685s